Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biology (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036386

RESUMO

Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3-5 weeks. Two to three portals per BNCT application were used to achieve a potentially therapeutic dose over the tumor without exceeding normal tissue tolerance. Clinical and Computed Tomography results evidenced partial tumor control in all cases, with slight-moderate mucositis, excellent life quality, and prolongation in the survival time estimated at recruitment. These exploratory studies show the potential value of BNCT in veterinary medicine and contribute towards initiating a clinical BNCT trial for head and neck cancer at the RA-6 clinical facility.

2.
Radiat Environ Biophys ; 58(2): 237-245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689023

RESUMO

Osteosarcoma is the most common primary malignant tumour of bone in young patients. The survival of these patients has largely been improved due to adjuvant and neo-adjuvant chemotherapy in addition to surgery. Boron neutron capture therapy (BNCT) is proposed as a complementary therapy, due to its ability to inactivate tumour cells that may survive the standard treatment and that may be responsible for recurrences and/or metastases. BNCT is based on neutron irradiation of a tumour enriched in 10B with a boron-loaded drug. Low-energy neutron capture in 10B creates charged particles that impart a high dose to tumour cells, which can be calculated only knowing the boron concentration. Charged particle spectrometry is a method that can be used to quantify boron concentration. This method requires acquisition of the energy spectra of charged particles such as alpha particles produced by neutron capture reactions in thin tissue sections irradiated with low-energy neutrons. Boron concentration is then determined knowing the stopping power of the alpha particles in the sample material. This paper describes the adaptation of this method for bone, with emphasis on sample preparation, experimental set-up and stopping power assessment of the involved alpha particles. The knowledge of boron concentration in healthy bones is important, because it allows for any dose limitation that might be necessary to avoid adverse effects such as bone fragility. The measurement process was studied through Monte Carlo simulations and analytical calculations. Finally, the boron content of bone samples was measured by alpha spectrometry at the TRIGA reactor in Pavia, Italy, and compared to that obtained by neutron autoradiography. The agreement between the results obtained with these techniques confirms the suitability of alpha spectrometry to measure boron in bone.


Assuntos
Boro/análise , Fêmur/química , Adulto , Partículas alfa , Animais , Humanos , Método de Monte Carlo , Ovinos
3.
Int J Radiat Biol ; 95(5): 646-654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30601686

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. BNCT has been proposed for the treatment of multiple, non-resectable, diffuse tumors in lung. The aim of the present study was to evaluate the therapeutic efficacy and toxicity of BNCT in an experimental model of lung metastases of colon carcinoma in BDIX rats and perform complementary survival studies. MATERIALS AND METHODS: We evaluated tumor control and toxicity in lung 2 weeks post-BNCT at 2 dose levels, including 5 experimental groups per dose level: T0 (euthanized pre-treatment), Boronophenylalanine-BNCT (BPA-BNCT), BPA + Sodium decahydrodecaborate-BNCT ((BPA + GB-10)-BNCT), Beam only (BO) and Sham (no treatment, same manipulation). Tumor response was assessed employing macroscopic and microscopic end-points. An additional experiment was performed to evaluate survival and oxygen saturation in blood. RESULTS AND CONCLUSIONS: No dose-limiting signs of short/medium-term toxicity were observed in lung. All end-points revealed statistically significant BNCT-induced tumor control vs Sham at both dose levels. The survival experiment showed a statistically significant 45% increase in post-treatment survival time in the BNCT group (48 days) versus Sham (33 days). These data consistently revealed growth suppression of lung metastases by BNCT with no manifest lung toxicity. Highlights Boron Neutron Capture Therapy suppresses growth of experimental lung metastases No BNCT-induced short/medium-term toxicity in lung is associated with tumor control Boron Neutron Capture Therapy increased post-treatment survival time by 45.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Pulmonares/radioterapia , Pesquisa Translacional Biomédica , Animais , Terapia por Captura de Nêutron de Boro/efeitos adversos , Linhagem Celular Tumoral , Neoplasias do Colo/secundário , Relação Dose-Resposta à Radiação , Neoplasias Pulmonares/patologia , Radiometria , Ratos , Análise de Sobrevida
4.
Appl Radiat Isot ; 137: 62-67, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29587160

RESUMO

The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm-2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis.


Assuntos
Autorradiografia/métodos , Boro/análise , Nêutrons , Animais , Autorradiografia/normas , Osso e Ossos/química , Boro/normas , Terapia por Captura de Nêutron de Boro , Calibragem , Simulação por Computador , Modelos Animais , Radiometria/métodos , Radiometria/normas , Ovinos , Processos Estocásticos , Distribuição Tecidual
5.
Radiat Environ Biophys ; 56(4): 365-375, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28791476

RESUMO

The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias do Colo/radioterapia , Animais , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Imunoterapia , Masculino , Metástase Neoplásica , Ratos
6.
Radiat Oncol ; 12(1): 130, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28806981

RESUMO

BACKGROUND: Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. METHODS: The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. RESULTS: The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is concluded when the comparison is carried out taking into account osteosarcoma irradiations with photon radiation therapy. CONCLUSIONS: The possibility to apply BNCT to osteosarcoma would allow a multimodal treatment consisting in neo-adjuvant chemotherapy, high-LET selective radiation treatment and a more conservative surgery.


Assuntos
Neoplasias Ósseas/radioterapia , Terapia por Captura de Nêutron de Boro/métodos , Osteossarcoma/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Adolescente , Animais , Humanos , Masculino , Radiometria , Ratos
7.
Phys Med ; 30(8): 888-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25176019

RESUMO

Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high LET radiation. It consists in the enrichment of tumour with (10)B and in the successive irradiation of the target with low energy neutrons producing charged particles that mainly cause non-repairable damages to the cells. The feasibility to treat Non Small Cells Lung Cancer (NSCLC) with BNCT was explored. This paper proposes a new approach to determine treatment plans, introducing the possibility to choose the irradiation start and duration to maximize the tumour dose. A Tumour Control Probability (TCP) suited for lung BNCT as well as other high dose radiotherapy schemes was also introduced. Treatment plans were evaluated in localized and disseminated lung tumours. Semi-ideal and real energy spectra beams were employed to assess the best energy range and the performance of non-tailored neutron sources for lung tumour treatments. The optimal neutron energy is within [500 eV-3 keV], lower than the 10 keV suggested for the treatment of deep-seated tumours in the brain. TCPs higher than 0.6 and up to 0.95 are obtained for all cases. Conclusions drawn from [Suzuki et al., Int Canc Conf J 1 (4) (2012) 235-238] supporting the feasibility of BNCT for shallow lung tumours are confirmed, however discussions favouring the treatment of deeper lesions and disseminated disease are also opened. Since BNCT gives the possibility to deliver a safe and potentially effective treatment for NSCLC, it can be considered a suitable alternative for patients with few or no treatment options.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Antropometria , Encéfalo/efeitos da radiação , Humanos , Modelos Estatísticos , Movimento (Física) , Nêutrons , Fótons , Probabilidade , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Tórax/efeitos da radiação , Resultado do Tratamento
8.
Appl Radiat Isot ; 88: 171-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24373821

RESUMO

From 2008 to 2011, several planned modifications were implemented at the RA-6 reactor in Argentina, leading to significant benefits for future BNCT treatments. New capabilities have been implemented in NCTPlan treatment planning system. To assess the performance of the new BNCT facility, a dosimetric reevaluation of previous clinical cases was performed, taking into account the modifications carried out in the new facility and compared the results of the original treatment plans with optimized plans that are considered as feasible patient setups.


Assuntos
Terapia por Captura de Nêutron de Boro/normas , Posicionamento do Paciente/normas , Garantia da Qualidade dos Cuidados de Saúde , Melhoria de Qualidade/normas , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Erros de Configuração em Radioterapia/prevenção & controle , Argentina , Humanos
9.
Radiat Environ Biophys ; 52(3): 351-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23591915

RESUMO

Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹°B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹°B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.


Assuntos
Boroidretos/farmacocinética , Terapia por Captura de Nêutron de Boro , Neoplasias Bucais/metabolismo , Compostos de Sulfidrila/farmacocinética , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinógenos , Cricetinae , Modelos Animais de Doenças , Mesocricetus , Neoplasias Bucais/induzido quimicamente , Distribuição Tecidual
10.
Radiat Res ; 178(6): 609-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148506

RESUMO

With the aim to relate the effects observed in a clinical boron neutron capture therapy protocol to the corresponding outcomes in a standard photon radiation therapy, "RBE-weighted" doses are customarily calculated by adding the contributions of the different radiations, each one weighted by a fixed (dose and dose rate independent) relative biological effectiveness factor. In this study, the use of fixed factors is shown to have a formal inconsistency, which in practice leads to unrealistically high tumor doses. We then introduce a more realistic approach that essentially exploits all the experimental information available from survival experiments. The proposed formalism also includes first-order repair of sublethal lesions by means of the generalized Lea-Catcheside factor in the modified linear-quadratic model, and considers synergistic interactions between different radiations. This formalism is of sufficient simplicity therefore to be directly included in all BNCT treatment planning systems. In light of this formalism, the photon-isoeffective doses for two BNCT clinical targets were computed and compared with the standard dose calculation procedure. For the case of brain tumors and clinically relevant absorbed doses, the proposed approach derives isoeffective doses that are much lower than the fixed RBE method, regardless of considering synergism. Thus, for a tumor that receives a mean total absorbed dose of 15 Gy (value achievable with 50 ppm of boron concentration and typical beams used in the clinic), the photon-isoeffective doses are 28 Gy (IsoE) and 30 Gy (IsoE) (without and with synergism, respectively), in contrast to 51 Gy (RBE) for the fixed RBE method. When the clinical outcome of the Argentine cutaneous melanoma treatments is assessed with regard to the doses derived from the standard procedure, it follows that the fixed RBE approach is not suitable to understand the observed clinical results in terms of the photon radiotherapy data. Moreover, even though the assumed (10)B concentration in tumors is lowered to reduce the obtained doses with the standard procedure, the fixed RBE approach is still unsuitable to explain the observed outcomes (the model is always rejected with P values of virtually zero). Additionally, the numbers of controlled tumors predicted by the proposed approach are statistically consistent with observed outcomes. As a by-product of this work, a dose-response clinical reference for single-fraction melanoma treatments is developed.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Fótons/uso terapêutico , Doses de Radiação , Neoplasias Encefálicas/radioterapia , Humanos , Melanoma/radioterapia , Modelos Biológicos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Neoplasias Cutâneas/radioterapia
11.
Med Phys ; 38(12): 6502-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149833

RESUMO

PURPOSE: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. METHODS: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. RESULTS: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 ± 0.05 × 10(-21) A n(-1)[middle dot]cm² [middle dot]s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. CONCLUSIONS: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Radiometria/instrumentação , Ródio/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Nêutrons , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Appl Radiat Isot ; 67(7-8 Suppl): S145-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19386508

RESUMO

A Matlab-based computational tool, named SPHERE, was developed that helps determining tumor and skin doses in BNCT treatments. It was especially designed for cutaneous melanoma treatments and, among its features, it provides a guide for the location and delineation of tumors and a visual representation of superficial dose distributions (for both tumor and normal tissues). It also generates cumulative dose-volume histograms for different volumes of interest and dose-area histograms for skin. A description of the tool is presented, as well as examples of its application.


Assuntos
Terapia por Captura de Nêutron de Boro/efeitos adversos , Terapia por Captura de Nêutron de Boro/estatística & dados numéricos , Melanoma/radioterapia , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Neoplasias Cutâneas/radioterapia , Argentina , Humanos , Imageamento Tridimensional , Melanoma/patologia , Pele/lesões , Pele/efeitos da radiação , Neoplasias Cutâneas/patologia , Software
13.
Math Med Biol ; 25(2): 171-84, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18515259

RESUMO

Perfectly uniform dose distributions over target volumes are almost impossible to achieve in clinical practice, due to surrounding normal tissues dose constraints that are commonly imposed to treatment plans. This article introduces a new approach to compute tumour control probabilities (TCPs) under inhomogeneous dose conditions. The equivalent subvolume model presented here does not assume independence between cell responses and can be derived from any homogeneous dose TCP model. To check the consistency of this model, some natural properties are shown to hold, including the so-called uniform dose theorem. In the spirit of the equivalent uniform dose (EUD) concept introduced by Niemierko (1997, Med. Phys., 24, 103-110), the probability-EUD is defined. This concept together with the methodology introduced to compute TCPs for inhomogeneous doses is applied to different uniform dose TCP models. As expected, the TCP takes into account the whole dose distribution over the target volume, but it is influenced more strongly by the low-dose regions. Finally, the proposed methodology and other approaches to the inhomogeneous dose scenario are compared.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Melanoma/radioterapia , Modelos Biológicos , Doses de Radiação , Neoplasias Cutâneas/radioterapia , Relação Dose-Resposta à Radiação , Humanos , Modelos Estatísticos , Distribuição de Poisson , Probabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
Phys Med Biol ; 50(3): 441-58, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15773722

RESUMO

In recent years, many efforts have been made to study the performance of treatment planning systems in deriving an accurate dosimetry of the complex radiation fields involved in boron neutron capture therapy (BNCT). The computational model of the patient's anatomy is one of the main factors involved in this subject. This work presents a detailed analysis of the performance of the 1 cm based voxel reconstruction approach. First, a new and improved material assignment algorithm implemented in NCTPlan treatment planning system for BNCT is described. Based on previous works, the performances of the 1 cm based voxel methods used in the MacNCTPlan and NCTPlan treatment planning systems are compared by standard simulation tests. In addition, the NCTPlan voxel model is benchmarked against in-phantom physical dosimetry of the RA-6 reactor of Argentina. This investigation shows the 1 cm resolution to be accurate enough for all reported tests, even in the extreme cases such as a parallelepiped phantom irradiated through one of its sharp edges. This accuracy can be degraded at very shallow depths in which, to improve the estimates, the anatomy images need to be positioned in a suitable way. Rules for this positioning are presented. The skin is considered one of the organs at risk in all BNCT treatments and, in the particular case of cutaneous melanoma of extremities, limits the delivered dose to the patient. Therefore, the performance of the voxel technique is deeply analysed in these shallow regions. A theoretical analysis is carried out to assess the distortion caused by homogenization and material percentage rounding processes. Then, a new strategy for the treatment of surface voxels is proposed and tested using two different irradiation problems. For a parallelepiped phantom perpendicularly irradiated with a 5 keV neutron source, the large thermal neutron fluence deviation present at shallow depths (from 54% at 0 mm depth to 5% at 4 mm depth) is reduced to 2% on average. Reassigning fluence values in the case of this phantom in angular position produced the maximum deviation in the thermal fluence to decrease from 140% to 23% at the surface of the phantom. Thus, even for the largest deviations, obtained by intentionally placing the phantom in the most disadvantageous position with respect to the voxel grid, the reassignment shows very good performance. Since these results substantially improve the performance of the 1 cm based voxel model in surface boundary regions, the proposed strategy will be implemented in future versions of the NCTPlan code.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Radiometria , Radioterapia/métodos , Dosagem Radioterapêutica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...